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Abstract. Phonon drag thermopower S, calculations are presented for a qUaSi-2D electron 
gas at the (100) plane in a Si MOSFET and compared with previous theory and experiment. 
Without screening -S, is improved to a factor of approximately 16 times larger than 
experiment (from approximately 35). Multi-sub-band screening is considered and its import- 
ance assessed in the experimental range (2-6 K and electron densities to 10l6 m-2) but 
a single sub-band approximation is found to be sufficient and gives thermopowers just 
approximately 40% different from experiment. Further improvement is made by adopting 
the Fang and Howard variational wavefunction and better material parameters. The best 
agreement is found to be about 5% at temperatures in the mid-range (4 K) and for the highest 
electron densities. The same excellent qualitative agreement with experiment is retained 
including the peak in -S,/T3 whose presence is explained by enhanced phonon absorption 
around the Kohn resonance (q  = 2kF). The peak positions move up in temperature (by about 
0.75 K) because the dominant q-value increases and reduces the effect of screening on S, at 
higher T. In GaAs/GaAIAs heterojunctions S, is much less sensitive to screening effects 
because the screening constant is much smaller in GaAs than it is in Si. 

1. Introduction 

Bothexperiment (Gallagher etal 1987, FletcheretaZl986,1988, Ruf etal 1988) and theory 
(Cantrell and Butcher 1987a, b) confirm the dominance at liquid helium temperatures of 
the phonon drag contribution S, to the thermopower S of a quasi-2~ electron gas (Q~DEG) 
in inversion layers and at heterojunctions. In Si MOSFETS (Gallagher et al 1987) and in 
GaAs/GaAlAs heterojunctions (Fletcher et aZ 1986, 1988, Ruf et a1 1988) measured 
thermopowers much greater than the value Sd expected from metallic electron diffusion 
processes alone (e.g. Blatt 1968) have been reported. Non-linear temperature depen- 
dence consistent with a large S,contributionis found. This was confirmed by Cantrell and 
Butcher (1987b) whose S,calculations give good qualitative agreement with experiment, 
particularlyfor Siinwhich apeakin -S /T3  againsttemperature Twasnoted by Gallagher 
et a1 (1987). Their predicted linear dependence of S, on the boundary scattering limited 
phonon mean free path L (typically <1 mm) has since been confirmed in an elegant 
experiment by Fletcher et a1 (1988). Recently S, and S, terms have been isolated in S as 
UT and bT3 respectively (Ruf et a1 1988) and the T3 contribution attributed to phonon 
drag found to dominate in the range 0.6-2.5 K. Thus experimental consensus is being 
reached. However, the accompanying theory whilst qualitatively accurate is quanti- 
tatively unsatisfactory in that the calculated values for S ,  are larger than those seen 
experimentally: by a factor of 35 in the MOSFET and by a factor of 2 in the heterojunction. 
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Here we present the results of screened S, calculations for a QZDEG at the (100) 
surface in a Si MOSFET. We have taken the formalism of Cantrell and Butcher (1987a) 
and find that when screening of the electron-phonon interaction is introduced the 
quantitative agreement becomes extremely good whilst the excellent qualitative agree- 
ment is preserved. In § 2 we briefly review the unscreened S,formula. We find that even 
without screening this formula actually predicts thermopowers in better agreement 
with experiment than previously thought. This conclusion is confirmed by using an 
alternative, more direct, method of performing the numerical integration. In § 3 we 
show that screening is important in the calculation of S, and explain why it is more 
important in Si than it is in GaAs by considering a pure 2DEG. These considerations 
explain why the unscreened calculations were quantitatively much more accurate for a 
GaAs/GaAlAs heterojunction than for a Si MOSFET. In § 4 we explore the application 
of quasi-zD screening and review the multi-sub-band screening (MSS) theory of Mori and 
Ando (1979) in the infinite square-well (ISW) model used by Cantrell and Butcher 
(1987b). We present the results of this study by defining an effective MSS dielectric 
function for screening the matrix elements of a bare potential. We compare this with a 
single-sub-band approximation (SSA) and find for surface electron densities 
no < 1 O I 6  m-2 and ISW widths 6 < 100 A (the experimental range of Gallagher et a1 
(1987)) that the SSA is adequate. Outside this range more sub-bands are required even 
in the electric quantum limit because in principle all the sub-band wavefunctions are 
needed to describe the redistribution of charge across the conducting channel. 

The SSA is used in § 5 to screen the electron-phonon interaction in the S, formula 
and the results show considerable quantitative improvement over the unscreened S, 
values. We go beyond the ISW model by adopting the Fang and Howard variational 
wavefunction discussed in the review by Ando et aZ(1982) for each no and use better 
values for the material parameters to calculate S,values within 30% of the experimental 
data. The best quantitative agreement is found at the higher experimental electron 
density and temperature values and is better than 5%.  Finally we comment on the 
temperature dependence of S, in a QZDEG in comparison to the T3 dependence which is 
expected for metallic conduction, see for example, Blatt (1968). 

2. Unscreened S, calculations 

It is important to review the derivation of the unscreened S, formula both to see how 
screening may be introduced into it and so that our alternative numerical evaluation of 
the unscreened formula can be described. However, we outline only the points which 
are significant for the present paper and refer the reader to Cantrell and Butcher (1987a) 
for details. 

Phonon drag arises from the net flux of phonon momentum in a temperature gradient 
when there is an electron-phonon interaction and hence a net momentum transfer to 
the electrons. In the QZDEG systems of interest to us this interaction is weak but dominates 
the electron behaviour as evidenced by S,. In the calculation of S,  it is assumed that the 
phonons have a 3~ character and interact with quasi-zD electrons which are free in anxy 
plane of area A and confined in the z direction, with some characteristic width 6, to a 
set of sub-bands labelled by an index a. Then ( a , k )  labels the electron state with 
wavevector k in sub-band a, with wavefunction: 

Y ~ , ~ ( R )  = A-'/2 elk ' rqa(z)  (2.1) 
where R is ( r ,  z )  and r is  (x, y ) .  To calculate S we note that the thermoelectric field in the 
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direction of a temperature gradient V T  in the xy plane, is given at zero current density 
by : 

E = SVT. (2.2) 
When the EMF is reduced to zero by allowing current to flow the 2~ thermoelectric current 
density due to the temperature gradient is 

J =  -0SVT (2.3) 
in which U is the 2D conductivity. J can be obtained by evaluating the 3~ electric current 
density from (2.1) summing over electron states and integrating across the Q2DEG channel 
to give: 

Here we account for spin by a factor of 2 and for the occupancy of state (a, k )  by the 
distribution function f ,(k); U,,$ is the corresponding electron velocity. S is obtained by 
comparing (2.3) and (2.4) and S, is that part of Sarising from the departure of the phonon 
distribution from thermal equilibrium. 

To obtainf,(k) the coupled electron and phonon Boltzmann equations are linearised 
and solved in the relaxation time approximation at temperatures low enough to allow 
the neglect of all but acoustic phonons of wavevectors Q = (q ,  q2), with q = (qx, qy), and 
energies hue. The result is proportional to a weighted sum over a, p, k and Q of the 
transition rate P i ( a ,  k;  p, k + q )  for the adsorption of a phonon Q by an electron going 
from state (a, k )  to state (p ,  k + q ) .  The electronic matrix element involved in the 
transition rate is evaluated by using the electron-LA phonon adsorption potential for the 
phonon: 

UQ(R) = i E , ( h / 2 p V @ ~ ) ” ~ Q  e‘Q‘R (2.5) 
in the Golden Rule. Here E ,  is a spherically symmetric acoustic phonon deformation 
potential and p and V are the density and volume of the material. Ground sub-band 
occupation only is assumed and hence all subband labels and summations over them are 
dropped. When the sums over k and Q are transformed to integrals the final result for S,  
from  p phonons can be written in the form: 

s = -  
hvs E:m*g, L 

8 ( 2 4 3  kB T2noep 

where m* is the constant electron effective mass assumed for motion in the xy plane, g, 
is the valley degeneracy and U, is the sound velocity for LA phonons. In (2.6) G(Q) is 
defined by: 

h2q2 ii2kFq cos0 
- h w Q )  d 0  m* G(Q) = + 

-n 

and has the value: 

2m* 
G(Q) = - (1- CX(Q)~)-”~ 

h24kF 
(2. sa) 
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where: 

(2.8b) 

when the argument of the delta function in (2.7) vanishes for some 6' and is zero 
otherwise. The condition for a non-zero result is la@)/ s 1, which defines the field of 
integration in (2.6). 

The anisotropy of Si causes an additional complication since both LA and TA modes 
contribute to S,. To deal with this Cantrell and Butcher (1987b) follow Ridley (1982) 
by taking E ,  inside the integrals in (2.6) and replacing it by 3:,(ql/Q2 + 0)  and by 
E,qq,/Q2 for LA and TA modes respectively. Here is the deformation potential for 
pure shear strain and D = Zd/ZU with E,, denoting the deformation potential for pure 
dilation. The resultant S, is then the sum of two contributions of the form (2.6): one for 
the LA phonon mode and one for the TA phonon mode. In their evaluation of (2.6) 
Cantrell and Butcher then remove the divergence in the integrand at I a(Q) 1 = 1 (and 
the restriction of the field of integration) by replacing the delta function in (2.7) by a 
Lorentzian with a width small enough to make S, independent of its precise value. The 
values of S, calculated in this way were about 35 times what is observed. When we repeat 
the same calculations using the same parameter values we find improved agreement with 
experiment in that the calculated results are now only about 16 times what is observed. 
We have confirmed these new unscreened results by performing the calculations using 
(2.8) as it stands and a direct, numerical integration routine which takes particular care 
of the inverse square-root singularity in G(Q) at the boundary of the integration field. 
We find agreement with our calculations using a Lorentzian approximation to the 6- 
function, to better than 5% and conclude that the calculations of Cantrell and Butcher 
(1987b) lack accuracy in the numerical integration. 

Determining the variational parameter b in the Fang and Howard wavefunction (see 
Ei 5 )  provides an estimate of the correct ISW width to take in the calculations. Equating 
the position expectation value (2) in the two models gives 6 = 6/b where b is determined 
by known parameters. We find that 6 = 80 A is a much more representative value than 
the rough estimate of 20 A used in the original calculations. S, is a decreasing function 
of 6 (Cantrell and Butcher 1987b) but changing 6 from 20 A to 80 A only reduces -S, 
by 10% because S, is only weakly dependent on 6 in the regime under discussion. For 
this reason it also seems unlikely that the use of a more realistic wavefunction than that 
for an ISW model would do much to bring about a qualitative reconciliation of theory 
and experiment at this stage. We therefore turn to the central concern of this paper 
(which is to introduce screening of the electron-phonon interaction) by considering the 
screening problem in the ISW model used previously. 

3. Screening: general considerations 

Static linear screening theory seeks to obtain the screened potential V ( R )  by accounting 
for the redistribution of free charge in response to a weak bare potential Vb(R). In our 
case Vb(R) = U&) in (2.5). To calculate V(R)  the perturbation in the electron density 
is best described by an expansion in the set of unperturbed electron states. For a 
homogeneous 3D free-electron system Vmay then be related to Vb through the Lindhardt 
dielectric function (see for example, Ehrenreich and Cohen (1959)) in Fourier space 
&(e>: 

V(Q> = Vb(Q)/4Q) (3.1) 
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where V(Q) and Vb(Q) are the 3D Fourier transforms of V(R) and Vb(R) respectively. 
However, this simple result is only obtained because of the complete translational 
invariance of the homogeneous system which is lost in the QZDEG. In the strict 2~ limit 
in which the ~ D E G  is confined to z = 0 in a 3D host of relative permittivity K we have a 
similar relationship between the 2~ Fourier transforms of the bare and screened poten- 
tials on the plane z = 0. Thus Q is replaced by q in (3.1) with (Stern 1967): 

( 3 . 2 ~ )  4 q )  = 1 - VCWq) = 1 + (45./4)&?) 
where 

(3.2b) 

Here Vc = e2/2m0q is the ZD Fourier transform of the Coulomb interaction e2/4?GK&oR 
on the plane z = 0. n(q) is the 2D polarisability defined in (3.10) with p = A = 1 and the 
screening constant: 

The matrix element whose square enters into the calculation of P i ( a ,  k ;  p ,  k + q )  
and S, is (p ,  k + q1 U$(R)la,  k)  with given by (2.5). An estimate of the effect of 
screening this matrix element may be gained by considering the 2~ limit for U $ ( R )  by 
putting z = 0. Then the 2D Fourier transform of the bare potential is clearly given by: 

rib ( q )  = iEl  (h/2pVwQ) 'i2 Q. (3.4) 
The dominant contributions to S,  come from near q = 2kF. We therefore estimate 
the effect of screening on S,  by evaluating K 2 ( q )  from (3.2) when q = 2kF with no = 
9.8 x 1015 m-2 (the largest value in the data of Gallagher et a1 1987). We find that S ,  can 
be expected to be reduced by afactor of approximately0.05. For GaAs the corresponding 
reduction factor is only 0.5. On the basis of these elementary considerations we expect 
screening to play a dominant role in determining the absolute magnitude of S, in the 
MOSFET data as suggested by Gallagher et a1 (1987) and a much less important but still 
significant role in the heterojunction data because of the relative values of qs in Si and 
GaAs. 

In quasi-2~ the finite well width must be allowed for. Translational invariance is 
retained only in the xy plane. Moreover, since the z dependence of the perturbed 
electron density is conveniently expanded in the set cp,(z), all the sub-bands are involved 
in the screening whether they are occupied or not. These ideas lead to the result of Siggia 
and Kwok (1970) that: 

where 

V,p(q) = (a, k + 41V(R)IP, k )  (3.6) 
and is equal to the matrix element between sub-bands aand  p of t h e 2 ~  Fourier transform 
of V(R) with z held fixed. The quantity V",(q) has the same interpretation in terms of 
Vb(R). The bare and screened matrix elements are related by (3.5) which may be written 
in the more transparent form: 

(3.7) Q b  = &V 
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where vb and v are vectors whose elements are the matrix elements in (3.5) in some 
chosen order and E is the dielectric superoperator matrix. Thus, taking account of only 
two sub-bands, 1 and 2, we have: 

(3.8) 

v22 

The q dependence of all elements has been left as understood for clarity and for n sub- 
bands E is thus an n2 x n2 matrix whose elements are: 

EaPpA(4)  = 6 p , d A , @  - V c ~ a p , A ( 4 ) n p A ( Q ) .  (3.9) 
In (3.9) the multi-sub-band polarisability is: 

(3.10) 

and is given in the Appendix. We note here that n,,(q) = 0 for p, A > 1 for the case of 
interest to us in which only the ground sub-band, with p = 1, is occupied. The form 
factor is given by: 

VCF,@ph(4) = j ~ ( ~ , Z , Z ’ > U , ~ ( Z ) Q ) p ( Z ) Q ) I , ( Z ’ ) Q ) ~  (29  d z  dz’  (3.11) 

where g(q,  2, zr )  is the 2D Fourier component of the net Coulomb interaction between 
electrons at z and 2 ’ .  This quantity satisfies: 

in the general case and is just Vc e-qiz-z’l when K ( Z )  is a constant K .  In a MOSFET in which 
the QZDEG resides in Si of relative permittivity K~ at the interface with S i02  of relative 
permittivity K ~ ,  we set z = 0 at the junction so that: 

z < o  
(3.13) (:1 2 a 0. 

K ( Z )  = 

In this case: 
g(q, 2 , ~ ’ )  = 1 Vc{(I + K ~ / K * )  e - q i Z - 2 ’ 1  + (1 - K1/K2) e-q lz+z’ I )  (3.14) 

for z 2 0, which is the standard result when the average of K~ and replaces K in V‘ 
(Ando et a1 1982). 

The case of the pure 2DEG is treated by letting 6 + 0.  In this limit the denominators 
of all the JIpA(q) become very large except for nl1(q) and only the case a! = /3 = 1 is of 
interest. Hence only EI l l1 (q )  is significant. Moreover, the form factor Fllll(q) is the 
average of g(q,  z ,  z’)/Vc over the electron positions in the ground sub-band and tends 
to unity in the 2~ limit. Thus the 2~ result embodied in (3.2) and (3.3) is recovered. In 
quasi-2D when 6 remains very small IIl1(q) still dominates but FlIl1(q) S 1. Retaining 
only those terms with p = A = 1 in (3.5) and evaluating Fllll(q) gives the SSA to MsS with 
the quasi-2~ dielectric function: 

(3.15) e , (q )  = 1 - VCJII(q)F1lll(q) = 1 + 4sRq)F1111(q)/q. 
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The SSA is commonly used (Ando et a1 1982) because of its simplicity. However, it will 
break down when 6 is sufficientlylarge. In the next section we estimate the error involved 
in using it in the cases of interest to us by making calculations for the ISW model. 
Fortunately they turn out to be small so that the major complications inherent in the MSS 
equation (3.5) may be avoided in our calculations. The quantities required are given in 
the Appendix. 

4. Screening: calculations 

Using the matrix notation of (3.7) the MSS equation can be formally inverted so that (3.5) 
can be written in the form: 

where €; jPA(q) is an element of the inverse of the dielectric superoperator matrix. By 
expanding the bare potential matrix elements Vb(q, z )  as a Fourier series in qz where 

and by similarly expanding V ( q ,  z )  we obtain: 

(4.3) 

In (4.3) we have defined the effective MSS dielectric function for screening VaP(q) as: 

Then (4.3) has a similar structure to (3.1) but relates to a particular matrix element of 
the potential and involves a sum over qz. Equations (4.3) and (4.4) provide a convenient 
reformulation of the MSS equations. In particular we see that the SSA is obtained by 
ignoring the dependence of &,,(e) on a, @ and q2, replacing it by E , ( q )  in (3.15) and 
taking it outside the summation sign. 

The calculation of S,involves 1 Gl (q ) /  and we see from (2.5) that only the particular 
phonon component qz is present on the RHS of (4.3). The factor: 

f w p  (Q> = E ,  (q)*/IE,p (Q) I ’. (4.5) 
then measures the change in the contribution to S, from the phonon with wavevector Q 
effected by replacing the SSA by MSS. 

We have made calculations offl l(Q) for n = 1 ,2 ,3 ,  . . . , sub-bands until convergence 
was achieved. In all cases n S 5 was sufficient and for some cases only three sub-bands 
were necessary. All the quantities E , ( q ) ,  E,,(Q) andfwp(Q) were calculated in the ISW for 
6 ranging from 1 to 300 A with no = 10l6 and lo1’ m-* and q and q2 between 0 and 
10 kF. At no = 1015 m-’ we find that the SSA is good for all 6. Even for large 6 (200- 
300 A) deviations from MSS > 1% are only just beginning to appear when qz > 4kF. 
These deviations decrease for any q2 with increasing q but increase with increasing qz at 
given q.  At no = 10l6 m-*they remain 6 1 %  for all q ,  q2 when 6 s 50 A but for 6 = 200 
and 300 A the deviations increase to 10% even at qz = kFfor small q. Hence, as expected, 
the SSA is becoming inaccurate for large 6, large qz and large no. However, in the regime 



1268 M J Smith and P N Butcher 

of interest to us (no < 10l6 m-2 and 6 = 20-100 A) the SSA is adequate because the 
dominant contributions to S,  come from IQ1 < 2kF. This is confirmed even at the highest 
experimental value of no (9.8 X m-*) where MSS effects are largest: over the tem- 
perature range 2-6 K the difference between using the SSA and MSS in the calculation of 
S,is negligible when 6 = 20 A and is only0.2% when 6 = 80 A. Tang (1988) has recently 
discussed MSS in GaAs/AlGaAs heterojunctions. 

5. Screened S, calculations 

We have evaluated the effects of including the SSA to MSS in the calculation of S, for the 
ISW model used by Cantrell and Butcher (1987b). The difference between theory and 
experiment comes down from a factor of approximately 16 too large to approximately 
40% too small. This is a considerable improvement over the previous theoretical results 
and warrants closer treatment of the sub-band wavefunctions because the information 
discarded by taking an ISW of constant width may now be comparable with the difference 
between theory and experiment. 

The Fang and Howard wavefunction 

q b ( z )  = (b3/2)1/2~ e-hz/2 2 2 0  (5.1) 
still neglects electron penetration into the oxide z < 0 but the parameter b may be 
determined for each no. This sub-band wavefunction should therefore provide a much 
better description of the dependence of S ,  upon no (see Ando et a1 1982). To determine 
b a variational calculation is performed: 

d 
- E(b) = 0 
d b  

( 5 . 2 ~ )  

(5.2b) 

and is the average many-body energy per electron which is the sum of contributions from 
the kinetic energy T,, the external potential Vext(z), the Hartree self-energy Vs(z) ,  and 
the local density approximation to the exchange and correlation energy Vx,(z). The 
averages in (5.2b) are all evaluated using the wavefunction (5.1). The kinetic energy 
associated with motion in the xy plane is ignored because it is independent of b. By 
neglecting the image, exchange-correlation, and quadratic term in the depletion energy 
we obtain the familiar analytic result: 

In this equation m: is the effective mass in the z direction and Ndepl is the areal density 
of acceptors in Si. It is supposed that there are NA acceptors per unit volume in the Si 
and that they are completely ionised over the depletion layer 0 < z < d. Then we have: 

(5.4) 
where the electrostatic band bending q d  is given approximately by equating the electron 
energy e q d  to the Si band gap (1.12 eV). We use equations (5.3) and (5.4), which are 
known to compare well with self-consistent calculations (Ando et a1 1982), in what 
follows. 
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3 4 5 
T ( K l  

Figure 1. A plot of -S, against temperature for the three largest experimental values of 
electron density, full curves are theoretical results and the symbols are the experimental 
points of Gallagher et a1 (1987). Electron densities in units of 10" m-2 are 9.8 (Cl), 7.8 (a) 
and6.1 ( A ) .  

Taking b from (5.3) and (5.4) we have used qb(z) to recalculate S,. We find the 
screened variational thermopowers are between 5 and 30% from the measured values. 
When we use better material parameter values than those used by Cantrell and Butcher 
(1987b) we find that the agreement becomesverygoodindeed. We assume the commonly 
accepted values for E, and Ed of 9.0 and -6.0 eV (Ando et a1 1982); we take vL and uT 
from the standard reference (Landolt-BBmstein, New Series 1982) and average over the 
phonon modes of appropriate propagation and lattice displacement directions, to obtain 
8.831 x lo3 and 5.281 x lo3 ms-' respectively, and we take m* at 0.1905mo and m,* at 
0 . 9 1 6 ~ ~ ~ .  The values taken by Cantrell and Butcher (1987b) were: 8.0,1.6 eV; 8.5 x lo3, 
5.0 x lo3 ms-' and 0 . 2 ~ 2 ~  respectively. Plots of -S,  against Tcalculated in this way are 
compared with the experimental data points of Gallagher et a1 (1987) in figure 1 for the 
highest electron densities no = 9.8,7.8 and 6.1 X ms-'. Both the experimental and 
theoretical values of -S, increase when no decreases. The agreement with experiment 
at 4 K is - 5 % ,  -4% and 6.8% respectively. 

Figure 2 shows plots of -S,/T3 against Tderived from those of figure 1. They exhibit 
the rather flat maxima found previously (Cantrell and Butcher 1987b, Gallagher et ul 
1987) which arise from the coincidence of the dominant q-value with the Kohn resonance 
at 2kF. However, the maxima are now all moved up in temperature by about 0.75 K as 
compared with those found in the original calculations. This is a direct result of intro- 
ducing screening. As T increases so does the dominant q-value and consequently the 
effectiveness of screening in reducing S ,  falls off. It would therefore appear that the 
close agreement between the experimental peak positions and those predicted by the 
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Figure 2. A plot of -S,/T3 against temperature for the same data in figure 1 

unscreened S, calculations was fortuitous. We note that our treatment of the 3~ phonons 
as having spherically symmetric scalar deformation potentials and constant (averaged) 
sound velocities is a little cavalier. We await both better treatments of the phonons and 
further experimental data to resolve the discrepancy in the peak positions (in figure 2). 
Merely taking different E", &, u L  and uT is insufficient. This affects /S,l and has little 
effect on the peak position compared with the 0.75 K displacement noted here. Treating 
qb(z) more closely by retaining all the terms in (5.2b) is only slightly more inconvenient 
because ( 5 . 2 ~ )  is then solved for b numerically. However, the expected change in b is 
small and shifts the peak position only slightly. Halving or doubling b for example causes 
a shift < 0.2 K. 

Finally, we note that peaks in both experimental and theoretical plots of -S,/T3 
against Tconfirm that there is no pure T3 dependence in S, even at the highest (i.e. most 
metallic) electron densities. The underlying form is T3 as pointed out by Gallagher et a1 
(1987) but there is also the enhancement through the divergence in the unbroadened 
integrand of (2.6) around q = 2kF superimposed. Clearly S,  increases faster than T3 
below the peak and more slowly above. This may explain the smooth departure from 
linearity of SIT taken as a + bT2 and plotted against P, seen in a GaAs/GaAlAs 
heterojunction by Ruf et a1 (1988). 
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6. Conclusions 

The unscreened S ,  formula of Cantrell and Butcher (1987~) leads to thermopowers 
approximately 16 times larger than experiment and not approximately 35 as previously 
thought. Introducing broadening to remove the singularity in the integrand of the Sg 
formula has only a small quantitative effect. Screening has a profound effect, however, 
particularly in Si where the screening constant is much larger than in GaAs due to the 
valley degeneracy and larger effective mass. This explains why the unscreened results 
agree better with experiment in GaAs than in Si. The excellent qualitative agreement 
with experimental thermopower measurements is preserved in the case of Si when 
screening is introduced. In adopting single-sub-band screening, which has been shown 
to be sufficient in the experimental regime, the quantitative difference is just -40% 
even in the constant infinite square-well model adopted previously by Cantrell and 
Butcher (1987b). The agreement with experimental data is improved considerably by 
adopting a variational wavefunction and better values for the material parameters. The 
best agreement with experiment is found to be 4% at temperatures in the middle of 
the experimental regime for the highest electron densities. A small shift to higher 
temperatures is noted in the peak position in graphs of -Sg/T3 versus T ,  which should 
be considered further by an improved treatment of the phonons in the light of additional 
experimental results. 
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Appendix 

The multi-sub-band polarisability IIGh(q) is calculated directly from (3.10) which can be 
written as 

q L h  (4) = n1 (U)  - n z ( w >  (AI) 

and 

and w is the ith sub-band energy. We find n 2 ( w )  is -n1(-w) and 
n l ( w )  is evaluated by transforming to an integral over k up to Ikl = kF in the electric 
quantum limit. HerefA(k) is zero for A > 1 or A = 1 and Ikl > kF and we have 

- - ir] with 

2m*W 2 1/2 
n1(w) = k gvm*GA’l 2n { [ (1 + ?I2 - (?)’]’’* - [ (1 + 7) ] } (A3) 

Hence 
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is the 2DEG polarisability 
taking expansions off(k 
,u > 1 is then 

of (3.2). The sign is determined by the limit q + 0 obtained by 
+ q) and ek+* aboutf(k) and E(k). The final result for A = 1 and 

where el, is ep measured from the ground sub-band energy E, .  The quantity II,,(q) is 
symmetrical in p and A and when both are greater than unity it vanishes when only the 
ground sub-band is occupied. The general result is given by Mori and Ando (1979). 

The form factor Fffppl , (q)  is calculated from the definition (3.11) and the result (3.14) 
taking 

q n ( z )  = (2/b)ll2 s in(am/s)  a =  1 , 2 , 3 . .  .. (A6) 
We find that 

F n p p h ( 4 )  = F1 + Fz 
where 

and 

For the matrix element (a(eiqzz I@) the result is 

where MEp(qZ)  and M L p ( q z )  are both real with 

MEp(q2) = m2 sinez - m,  sine, 

Ml,p(q,) = m2(1 - c o d 2 )  - m l ( l  - c o d )  

and 
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in which 

and 

$1 = ( a  - /3)n/6 + q26 $ 2  = ( a  + p)np + q28. 
The symbolspWp and pLp are defined in (All) .  
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